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Sp-Ro and S,-R4 Spaces

Hardi A. Shareef

Abstract— The purpose of this paper is to introduce two new classes of separation axioms by using the class of Sy-open sets called Sp-Rg
and Sy-R+ topological spaces. Also investigate some of their characterization and fundamental properties of them and relationship of them

with other separation axioms.

Index Terms — semi-open sets, Sy-open sets, Sy-closure, S,-Rg and Sy-R1.

1 INTRODUCTION

he notion of Sy-open sets was introduced by Shareef H. A.

in 2007 [M. Sc. Hardi] [1]. In 1963, N. Levine [7] offered a

new notion to the field of general topology by introducing
semi-open sets and defined this notion by utilizing the known
notion of closure of an open set. Since the advent of this no-
tion, several new notions are defined in terms of semi-open
sets of which two are semi-Ry and semi-R; introduced by S. N.
Maheshwari and R. Prasad [3] and C. Dorsett [2], respectively.
These two notions are defined as natural generalizations of the
separation axioms Ry which introduced by N. A. Shanin [6] in
1943 and R; by A. S. Davis [4] in 1961. In 1982 the notion of
preopen sets was introduced by A. S. Mashhour et al. [5]. In
this paper I study and introducing the mentioned separation
axioms of topological spaces in terms of S,-open sets called Sp-
Ro and SP—Rl.

2 PRELIMINARIES

Throughout this paper X and Y will be denote topological
spaces. If A is a subset of X, then the closure and interior of A
in X are deonted by cl(4) and int(4) respectively. The S,-
closure of A is denoted by Sycl(4). While scl(4) denote the
semi-closure of A. S,O(X) denote the family of all S,-open sets
in the space X.

Definition 2.1: A subset A of a space X is said to be:
1. Semi-open set [7], if A € clint(4).
2. Preopenset [5], if A € intcl(4).

The following definition and results are from [1].
Definition 2.2: A semi-open set A of a space X is called

Sp-open set if for each x € 4, there exists a preclosed set F such
thatx € F € A.
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Definition 2.3: A subset N of a space X is said to be

Sp-neighborhood (Sp-nbhd) of a point x € X, if there exists an
Sp-open set U such thatx € U S N.

Definition 2.4: Let X a space and A € X, then Sy-closure of A is
the intersection of all Sy-closed sets which containing A.

Lemma 2.5: Let A and B be subsets of a space X, then:
1. Spcl(A) is the smallest S,-closed set containing A.
2. Ais Sp-closed set if and only if A = Scl(4).
3. If A € B, then Sycl(4) € Sycl(B).
4. scl(4) € Spcl(4).

Lemma 2.6: [8] For any subset A of a space X, scl(4) =
intcl(4) U A.

The following are from [9].
Definition 2.7: A space X is said to be S,-Ty space if for each
pair of distinct points in X, there exists an S,-open set in X con-
taining one of them and not the other.

Definition 2.8: A space X is said to be S,-T1 space if for each
pair of distinct points x and y in X, there exists two Sp-open
sets U and V in X containing x and y respectively such that
ygUandx & V.

Definition 2.9: A space X is said to be S,-T» space if for each
pair of distinct points x and y in X, there exists two disjoint Sp-
opensets Uand Vin X suchthatx € Uandy € V.

Theorem 2.10: A space X is Sp-T; if and only if every singleton
subset of X is Sp,-closed.

Definition 2.11: [3] A space X is said to be semi-Ry if for each
semi-open set U and x € U, scl({x}) € U.

Definition 2.12: [2] A space X is said to be semi-R; if for each
x,y € X such that scl({x}) # scl({y}), then there exist disjoint
semi-open sets U and V such that scl({x}) € U and scl({y}) <
V.

3 S:-Ry AND Sq-R; SPACES

Definition 3.1: Let A be subset of a space X. The Sy-kernel of 4,
denoted by Sp-ker(4), is defined to be the set
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Sp-ker(4) = N {U € S,0(X): A4 € U}.

Definition 3.2: Let x be a point of a space X. The The Sy-kernel
of x, denoted by Sp-ker ({x}), is defined to be the set
Sp-ker({x}) = n{U € S;0(X): x € U}.
Lemma 3.3: Let X be a space and AcSX Then
Sp-ker(A) = {x € X: Spcl({x}) N A # ¢}.

Proof: Let x € Spker(4) and Spcl({x}) NA = ¢. Then
x & X\Spcl({x}) which is an S,-open set containing A this is a
contradiction, so Spcl({x}) N 4 = ¢.

Now let Spcl({x}) N A # ¢ and x & Sp-ker(4). Then there exists
an Sp-open set U containing A and x & U, and since
Spcl({fx}) N A # ¢ so let y € Spcl({x}) N A. Since A € U, then U is
Sp-nbhd of y and since y € Spcl({x}), then U N {x} # ¢ which is a
contradiction. Therfore x € Sy-ker(A), therefore S,-ker (A) =
{x € X:Scl({x}) N A # ¢}.

Lemma 3.4: Let X be a space and x € X. Then y € Sy-ker({x}) if
and only if x € Spcl({y}).
Proof: Obvious.

Theorem 3.5: Let X be a space. Then the following statements
are equivalent for any points x and y in X:

1. Sp-ker({x}) # Sp-ker({y}).

2. Spel({x}) # Spel({y]).
Proof: (1) = (2). Let Sy-ker({x}) # Sp-ker({y}). Then there ex-
ists a point z in X such that z € Sy-ker({x}) and z & Sy-ker({y})
this implies that by [Lemma 3.3] Sycl({z}) N {x} # ¢, then x €
Spcl({z}) and since z & Sy-ker({y}) implies that Sycl({z}) n
{y} = ¢. But x € S,cl({z}), then Spcl({x}) S Spcl({z}) and since
Spcl({z}) N {y} = ¢ implies that S,cl({x}) # Spcl({y}).
(2) = (1). Let Spel({x}) # Spcl({y}). Then there exists a point
z € Spcl({x}) and z € Sycl({y}) implies that there exists an
Sp-open set U in X containing z and x but not y, then
y & Sp-ker({x}) and hence Sy-ker({x}) # Sp-ker({y}).

Definition 3.6: A space X is said to be Sp-Ry if for each S,-open
set U and each x € U, implies Sycl({x}) € U.

Definition 3.7: A space X is said to be Sy-R; if for x and y in X
with Spel({x}) # Spel({y}), there exists two disjoint S,-open sets
U and V such that Sycl({x}) € U and Spcl({y}) € V.

Lemma 3.8: If a space X is Sp-Ro space, then for every Sy-open
set U and each x € U, intcl({x}) € U.

Proof: Let X be S,-Ro space. Then by [Definition 3.6] for every
Sp-open set U and each x € U, S,cl({x}) € U. But by [Lemma
2.5] scl({x}) € Spcl({x}) and scl({x}) = intcl({x}) U {x} by
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[Lemma 2.6], this implies that intcl({x}) € U.

Lemma 3.9: Every S,-R; space is Sp-Ro.

Proof: Let X be an Sy-R; space and U be any Sy-open set in X
withx € U. If y € U, then x & Scl({y}) implies that Spcl({x}) #
Spcl({y}) and since X is Sp-Ri space so by there exists disjoint
Sp-open sets G and H such that Sycl({x}) € G and Spcl({y}) €
H. Now x € H implies that y € Sycl({x}). Thus Spcl({x}) € U,
hence X is S,-Rg space.

Remark 3.10: The converse of [Lemma 3.9] is not true ingen-
eral as X ={a,b,c,d} and t = {¢, X, {c},{b,d}, {b, c,d}}. Then X
is Sp-Ro but not S,-R; space since for a,c € X with Spcl({a}) =
{a} # Spcl({c}) = {c} there does not exist two disjoint S,-open
sets one of them contain Sycl({a}) and the other contain

Spel({c]).

Fromm [Definition 2.11] and [Definition 2.12] it is clear that
every Sp-Ro is semi-Ry and every S,-R: is semi-R; but the
converse of them are not true ingeneral as shown in the
following examples:

1. Let X={ab,c,d} and 7={p X {c},{a b} {a b, c}}
Then SOX) = {¢, X, {c},{a, b}, {c,d},{a,b,c},{a,b,d}}
and S, O0(X) = {¢,X,{a, b},{c,d},{a,b,d}}, now X is
semi-Ry but not Sp-Ro since {a,b,d} € S;O(X) while
Secl({d}) = {c, d} is not a subset of {a, b, d}.

2. Let X be the same set as defined in (1) and
T ={¢,X,{d},{a,c},{a, c,d}}. Then X is semi-R; but not
Sp-R1.

Theorem 3.11: A space X is Sy-R¢ if and only if for every
Spclosed set F and x & F, there exists an Sp,-open set G such
thatx € G and F € G.

Proof: Let X be S,-Ry space and F be Sp-closed subset of X not
containing x € X. Then X\F is Sp-open set containing x, since X
is Sp-Ro space implies that Sycl({x}) € X\F and then
F € X\Spcl({x}). Now let G = X\Spcl({x}), then G is Sp-open set
not contains x and F € G.

Conversely: Let x € G where G is S,-open set in X. Then X\G is
Sp-closed set and x € X\G implies that by hypothesis there
exists and Sp-open set U such that x € U and X\G S U. Now
X\U € G and x € X\U, but X\U is Sp-closed set then S,cl({x}) €
X\U € G this implies that X is Sp-Ro space.

Theorem 3.12: For a space X, the following are equivalent:

1. XisSp-Ro.
2. For any two points x and y in X, x € Spcl({y}) if and
only if y € Spcl({x}).

Proof: (1) = (2). Let X be Sy-Ro and x € Sycl({y}. To show y €
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Spcl({x}), let V be any Sp-open set containing y. Since X is Sp-Ro
space so Sycl({y}) € V implies that x € V, hence every Sy-open
set which containing y contains x this implies that y €
Spcl({x}). By the same way we can prove that if y € Spcl({x},
then x € Spcl({y}

(2) = (1). Let the hypothesis be satisfied and U be any Sp,-open
set and x € U. To show Sycl({x}) € U, let y € Sycl({x}) implies
that by hypothesis x € Sycl({y}), and then U N {y} # @ this im-
plies that y € U. Thus Sycl({x}) S U, therefore X is Sp-Ro space.

Theorem 3.13: A space X is Sp-Ry if and only if for any x and y
in X if Spcl({x}) # Spcl({y}), then Spcl({x}) N Spcl({y}) = .
Proof: Let X be S,-Ro space and x,y € X such that Spcl({x}) #
Spcl({y}). Then there exists z € Sycl({x}) such that z € Sycl({y})
implies that there exists an Sy-open set U containing z but not
¥, hence x € Sycl({x}). Therefore we have x & S,cl({y}) implies
that x € X\Spcl({y}) which is an S,-open set, but X is Sp-Ro so
Spcl({x}) € X\Spcl({y}) this implies that Spel({x}) N Spcl({y}).
Conversely: Let the hypothesis be satisfied and let U be any Sp-
open set in X and x € U. If U = X, then clearly S,cl({x}) € U,
but if U # X, then there exists y € X such that y ¢ U. Now
x #y and x & Spcl({y}) implies that Spcl({x}) # Spcl({y}), then
by hypothesis Spcl({x}) N Sycl({y}) = ¢ implies that y &
Spcl({x}). Thus if y € U, then y & Sycl({x}) this implies that
Spcl({x}) € U. Hence X is S,-Ry space.

Theorem 3.14: A space X is S,-Ry if and only if for any points
x,y € X, if Sp-ker({x}) # Sp-ker({y}), then Sy-ker({x}) n S,-
ker({y}) = ¢.

Proof: Let X be S,-Ro space and x,y € X such that Sy-ker({x}) #
Sp-ker({y}). Then by [theorem 3.5] Spcl({x}) # Spcl({y}), now
to show Sp-ker({x}) N Sp-ker({y}) = ¢, if possible suppose that
Sp-ker({x}) N Sp-ker({y}) # ¢ implies that there exist
z € Sp-ker({x}) N Sy-ker({y}), then z € Sy-ker({x}) and z € S,-
ker({y}) implies that by [Lemma 3.4] x € Sycl({z}) and since
x € Spcl({x}), then by [Theorem 3.13] Sycl({z}) = Spcl({x}) simi-
larly Spel({z}) = Spel({y}) this implies that Sycl({x}) = Spcl({y})
is a contradiction, thus Sy-ker({x}) n Sp-ker({y}) = ¢.
Conversely: Let the hypothesis be satisfied. To show X is S-Ro
space, let x,y € X such that Spcl({x}) # Sycl({y}), then by [The-
orem 3.5] Sp-ker({x}) # Sy-ker({y}) implies that by hypothesis
Sp-ker({x}) N Sp-ker({y}) = ¢ which is implies that Sycl({x}) n
Secl({y}) = ¢. Thus by [Theorem 3.13] X is S,-Ro space.

Theorem 3.15: For a space X, the following are equivalent:
1. X is 5p-Re space.
2. For any A # ¢ and G € S,O(X) such that G N A # ¢,
there exists an Sy-closed set F such that AN F # ¢ and
Feca.
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3. AnySpopensetG, G =U{F:F €S5,C(X)and F € G}.

4. Any SpclosedsetF, F =n{G € S;O(X): F € G}.

5. For any x, Spcl({x}) € Sp-ker({x}).
Proof: (1) = (2). Let A be a non-empty setin X and G € S,0(X)
such that AN G # ¢. Then there exist x € AN G implies that
x € G and since X is Sp-Ro so Spcl({x}) € G. Let F = Spcl({x})
which is Sp-closed set such that FN G # ¢p and F S G.
(2) = (3). Let G be any Sp-open set in X. Then clearly
U{F € S;C(X):F € G} <G, and let x € G. Then take A = {x}
and A N G # ¢ so by hypothesis there exists an Sp-closed set F
suchthat F € G and x € F. Now x € F C U {F € S;C(X):F € G}
this implies that G CU {F € S,C(X):F € G}. Thus G =U{F:F €
SpC(X) and F € G}.
(3) = (4). Obvious.
(4) = (5). Let x be any point in the space X and y & Sp-ker({x}).
Then there exists an Sp-open set U such that x € U and y ¢ U
implies that Sycl({y}) N U = ¢ and then by hypothesis N {G €
SpO(X): Spel({y}) € G} N U = ¢ this implies that there exists an
Sp-open set G such that x € G and Sycl({y}) € G. Therefore
Secl({x}) NG = ¢ and y € Sycl({x}), consequently we obtain
Spcl({x}) € Sp-ker({x}).
(5) = (1). Let G be any Sp-open set in X and x € G and let
¥ € Sp-ker({x}). Then by [Lemma 3.4] x € S,cl({x}) and y € G.
But clearly Sp-ker({x}) S G, then by hypothesis Spcl({x}) S Sp-
ker({x}) € G this implies that Spcl({x}) € G. Hence X is Sy-Ro
space.

Corollary 3.16: A space X is Sp-Ry if and only if for all x € X
Spcl({x}) = Syeker((x)).

Proof: Let X be Sp-Ro. Then by [Theorem 3.15] for any x € X,
Spcl({x}) € Sp-ker({x}), and now let y € Sy-ker({x}) implies
that by [Lemma 3.4] x € Spcl({y}), then Spel({x}) N Spcl({y}) #
¢ implies that by [Theorem 3.13] Sycl({x}) = Sycl({y}) and then
v € Spel({x}), thus Spel({x}) = Sp-ker({x}).

Conversly: Obvious from [Theorem 3.15].

Theorem 3.17: For a space X, the following statements are
equivalent:

1. XisSp-Ro space.

2. For any Sp-closed set F, then F = Sp-ker(F).

3. If Fis Sp-closed set and x € F, then Sy-ker({x}) S F.
Proof: (1) = (2). Let F be any S,closed set in X and x & F.
Then X\F is Sy-open set contain x and since X is Sp-Ro space so
Secl({x}) € X\F implies that Sycl({x}) N F = ¢, then by [Lem-
ma 3.3] x & Sy-ker(F), therefore F = Sy-ker(F).

(2) = (3). Ingeneral if A € B, then Sy-ker(4) € Sy-ker(B) so
from (2) if x € F, where F is Sp-closed in X, then Sy-ker({x}) €
Se-ker(F) = F implies that Sy-ker({x}) S F.

(3) = (1). Let x,y € X and x € Spcl({y}), then by [Lemma 3.4]
y € Sp-ker({x}) and since x € Sgcl({x}), but Sgcl({x}) is
Sp-closed set so by (3) Sp-ker({x}) € Spcl({x}) this implies that
¥ € Spcl({x}) and for the converse it is obvious. Thus by [Theo-
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rem 3.12] X is Sp-Ro space.

Corollary 3.18: A space X is S,-R; if and only if for any two
points x,y € X such that Sp-ker({x}) # Sy-ker({y}), there exist
disjoint Sp-open sets U and V such that Sycl({x}) € U and
Spcl(fy) € V.

Proof: Let X be S,-R1 space and x,y € X such that Sy-ker({x}) #
Sp-ker({y}). Then by [Theoren 3.5] Spcl({x}) # Sycl({y}), then
there exist two disjoint Sp-open set U and V such that
Spcl({x}) € U and Spel({y}) € V.

Conversely: Let x,y € X such that S,cl({x}) # Spcl({y}).
Then by [Theoren 3.5] Sy-ker({x}) # Sy-ker({y}) implies that by
hypothesis there exist two disjoint S,-open sets U and V such
that Sycl({x}) € U and Sycl({y}) € V. Thus X is S,-Ri space.

Theorem 3.19: A space X is S,-T1 if and only if it is S,-To and
Sp-Ro.

Proof: Let X be S,-T: space. Then from [Definition 2.8] and
[Definition 2.7] X is S,-To and by [Theorem 2.10] every singlten
set in X is Sp-closed. Now X is Sp-Ro space since for any x € G,
where G is Sp-open set, Spcl({x}) = {x} € G. Thus the space X is
Sp-To and Sp-Ro.

Conversley: Let x,y € X be any two distinct points. Since X is
Sp-To space so there exists an Sp-open set U such that x € U and
ygUory€Uandx¢&U. Now let x € U and y € U and since
X is Sp-Ro space so Sycl({x}) € U and we have y € U implies
that y & Spcl({x}), then y € X\ Sycl({x}) which is Sy-open set so
take V = X\ Sycl({x}). Thus U and V are Sy-open sets in X such
that x €U,y €V and x ¢ V and y ¢ U, implies that X is S,-T1
space.

Theorem 3.20: A space X is S,-T» if and only if it is Sp-R1 and
Sp-To.

Proof: Let X be S,-T». Then from Definition 2.9 and Definition
2.7 X is Sp-To and to show X is Sy-R; space let x, y € X such that
Secl({x}) # Spel({y}) and since X is Sp-T space so by [Theorem
2.10] every singleton set in X is Sp-closed, that is meaning
Spcl({x}) = {x} and Sycl({y}) = {y} implies that {x} # {y} and
since X is Sp-T2 space so there exist two disjoint S,-open sets U
and V such that x € U and y € V implies that Spcl({x}) € U and
Spcl({y}) € V. Thus X is Sp-Ry space.

Conversely: Let X be S,-R; and Sp-To space and x,y € X such
that x # y. Now since X is S5,-To so by [Definition 2.7] there
exist an Sp-open set U such that x € U and y € U or y € U and
x & U, takex € U and y ¢ U implies that U n {y} = ¢, and then
x & Spcl({y}) this implies that Sycl({x}) # Spcl({y}) and since X
is Sp-R1 so there exist two disjoint Sp-open sets U and V such
that Sycl({x}) € U and Sycl({y}) SV implies that x € U and
y € V. Thus X is Sp-T> space.

Definition 3.21: [1] A filterbase F is said to be Sp-converges to
a point x € X, if for each S,-open set U containing x, there ex-
ists B € F such that B € U.

Lemma 3.22: Let X be a space and let xandy be any two
points in X such that every net in X Sp-converging to y Se-
converging to x, then x € Spcl({y}).

Proof: Let x, =y for all n € N. Then {x,},ey iS a net in
Spcl({y}), clearly {x,},en is Sp-converges to y and then by the
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hypothesis {x,},en is Sp-converges to x this implies that x €
Spel({y D).

Theorem 3.23: For a space X, the following statements are
equivalent:

1. X is Sp-Ro space.

2. Ifx,y € X, theny € Sycl({x}) if and only if every net in

X Sp-converging to y S,-converging to x.

Proof: (1) = (2). Let x,y € X such that y € Sycl({x}) and let
{Xa}aea be a net in X such that Sy-converges to y. Since y €
Spcl({x}), then by [Theorem 3.13] Sycl({x}) = Spcl({y}) implies
that x € Scl({y}) and then {x,}4en is Sp-converges to x.
Conversely: Let x, y € X such that every net in X S,-converging
to y Sp-converging to x. Then by [Lemma 3.22] x € Spcl({y})
and by [Theorem 3.13] we have Spcl({x}) = Spcl({y}) this im-
plies that y € Sycl({x}).
(2) = (1). Let x,y € X such that S,cl({x}) N Spcl({y}) # ¢. Then
there exist w € Spcl({x}) N Spcl({y}) implies that there exist a
net {x,}qea in Spcl({x}) such that {x,},eca is Sp-converges to w
and since w € Spcl({y}), then by hypothesis {x,}sen is Sp-
converges to y this implies that y € Spcl({x}). By the same to-
ken we obtain that x € Sycl({y}) implies that Sycl({x}) =
Secl({y}) and then by [Theorem 3.13] X is S,-Rg space.

REFERENCES

[1] Shareef H. A., “Sp-open sets, Sp-continuity and Sp-compactness in
topologi-cal spaces”, M. Sc. Thesis, College of Science, Sulaimani
University 2007.

[2] C. Dorset, “Semi-T1, Semi-R1 and Semi-Ro Topological Spaces”, Ann.
Soc. Sci. Bruxelles, Vol. 92,143-150, 1978.

[3] S. N. Maheshwari and R. Prasad, “On (Ro)s-spaces”, Portug. Math.,.
Vol 34, pp. 213-217, 1975.

[4] A.S. Davis, “Indexed Systems of Neighborhoods for General Topo-
logical Spaces”, The American Mathematical Monthly, Vol. 68, No. 9,
pp- 886-893, 1961.

[5] A.S.Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, “On precon-
tinuous and weak precontinuous mapping”, Proc. Math. Phys. Soc.
Egypt, Vol. 53, pp. 47-53, 1982.

[6] N. A. Shanin, “On separation in topological spaces”, Dokl. Akad.
Nauk. SSSR, Vol. 38, pp. 110-113, 1943.

[7] N. Levine, “Semi-open sets and semi-continuity in topological spac-
es”, Amer. Math. Monthly, Vol. 70, pp. 36-41, 1963.

[8] Ahmed N. K., “On some types of separation axioms”, M. Sc. Thesis,
College of Science, Salahaddin University 1990.

[9] Khalaf A. B. and Shreef H. A., “Sp-separation axioms”, International
Journal of Sientific and Engineering Research, Vol. 3, Issue 10, 2012.

IJSER © 2013
http://www.ijser.org





