S_p-R₀ and S_p-R₁ Spaces

Hardi A. Shareef

Abstract— The purpose of this paper is to introduce two new classes of separation axioms by using the class of S_p -open sets called S_p -R₀ and S_p -R₁ topological spaces. Also investigate some of their characterization and fundamental properties of them and relationship of them with other separation axioms.

____ **♦**

Index Terms — semi-open sets, S_p -open sets, S_p -closure, S_p - R_0 and S_p - R_1 .

1 INTRODUCTION

The notion of S_p -open sets was introduced by Shareef H. A. in 2007 [M. Sc. Hardi] [1]. In 1963, N. Levine [7] offered a new notion to the field of general topology by introducing semi-open sets and defined this notion by utilizing the known notion of closure of an open set. Since the advent of this notion, several new notions are defined in terms of semi-open sets of which two are semi- R_0 and semi- R_1 introduced by S. N. Maheshwari and R. Prasad [3] and C. Dorsett [2], respectively. These two notions are defined as natural generalizations of the separation axioms R_0 which introduced by N. A. Shanin [6] in 1943 and R_1 by A. S. Davis [4] in 1961. In 1982 the notion of preopen sets was introduced by A. S. Mashhour et al. [5]. In this paper I study and introducing the mentioned separation axioms of topological spaces in terms of S_p -open sets called S_p - R_0 and S_p - R_1 .

2 PRELIMINARIES

Throughout this paper *X* and *Y* will be denote topological spaces. If *A* is a subset of *X*, then the closure and interior of *A* in *X* are deonted by cl(A) and int(A) respectively. The S_p-closure of *A* is denoted by S_pcl(*A*). While scl(A) denote the semi-closure of *A*. S_pO(*X*) denote the family of all S_p-open sets in the space *X*.

Definition 2.1: A subset *A* of a space *X* is said to be:

- 1. Semi-open set [7], if $A \subseteq \text{clint}(A)$.
- 2. Preopen set [5], if $A \subseteq intcl(A)$.

The following definition and results are from [1].

Definition 2.2: A semi-open set *A* of a space *X* is called S_p -open set if for each $x \in A$, there exists a preclosed set *F* such that $x \in F \subseteq A$.

S_p-neighborhood (S_p-nbhd) of a point *x* ∈ *X*, if there exists an S_p-open set *U* such that x ∈ U ⊆ N.

Definition 2.4: Let *X* a space and $A \subseteq X$, then S_p-closure of *A* is the intersection of all S_p-closed sets which containing *A*.

Lemma 2.5: Let *A* and *B* be subsets of a space *X*, then:

- 1. S_p cl(A) is the smallest S_p -closed set containing A.
- 2. *A* is S_p-closed set if and only if $A = S_p cl(A)$.
- 3. If $A \subseteq B$, then $S_pcl(A) \subseteq S_pcl(B)$.
- 4. $\operatorname{scl}(A) \subseteq \operatorname{S}_{\operatorname{p}}\operatorname{cl}(A)$.

Lemma 2.6: [8] For any subset *A* of a space *X*, $scl(A) = intcl(A) \cup A$.

The following are from [9].

Definition 2.7: A space *X* is said to be S_p - T_0 space if for each pair of distinct points in *X*, there exists an S_p -open set in *X* containing one of them and not the other.

Definition 2.8: A space *X* is said to be S_p - T_1 space if for each pair of distinct points *x* and *y* in *X*, there exists two S_p -open sets *U* and *V* in *X* containing *x* and *y* respectively such that $y \notin U$ and $x \notin V$.

Definition 2.9: A space X is said to be S_p - T_2 space if for each pair of distinct points x and y in X, there exists two disjoint S_p -open sets U and V in X such that $x \in U$ and $y \in V$.

Theorem 2.10: A space *X* is S_p - T_1 if and only if every singleton subset of *X* is S_p -closed.

Definition 2.11: [3] A space *X* is said to be semi- R_0 if for each semi-open set *U* and $x \in U$, scl({*x*}) $\in U$.

Definition 2.12: [2] A space *X* is said to be semi-R₁ if for each $x, y \in X$ such that $scl({x}) \neq scl({y})$, then there exist disjoint semi-open sets *U* and *V* such that $scl({x}) \subseteq U$ and $scl({y}) \subseteq V$.

3 S_P-R_0 AND S_P-R_1 SPACES

Definition 3.1: Let *A* be subset of a space *X*. The S_p -kernel of *A*, to be denoted by S_p -ker (*A*), is defined to be the set

Author name: is currently one of the staff members of Department of Mathematics, Faculty of Science and Science Education, School of Science, University of Sulaimani, Iraq.
E-mail: <u>hardimath1980@gmail.com</u>

 $S_{p}-\ker(A) = \cap \{U \in S_{p}O(X): A \subseteq U\}.$

Definition 3.2: Let *x* be a point of a space *X*. The The S_p-kernel of *x*, denoted by S_p-ker ({*x*}), is defined to be the set S_p -ker({*x*}) = $\cap \{U \in S_pO(X) : x \in U\}$.

Lemma 3.3: Let X be a space and $A \subseteq X$. Then S_p -ker $(A) = \{x \in X: S_pcl(\{x\}) \cap A \neq \phi\}.$

Proof: Let $x \in S_p$ -ker(A) and S_p cl({x}) $\cap A = \phi$. Then $x \notin X \setminus S_p$ cl({x}) which is an S_p -open set containing A this is a contradiction, so S_p cl({x}) $\cap A \neq \phi$.

Now let $S_pcl({x}) \cap A \neq \phi$ and $x \notin S_p$ -ker(A). Then there exists an S_p -open set U containing A and $x \notin U$, and since $S_pcl({x}) \cap A \neq \phi$ so let $y \in S_pcl({x}) \cap A$. Since $A \subseteq U$, then U is S_p -nbhd of y and since $y \in S_pcl({x})$, then $U \cap {x} \neq \phi$ which is a contradiction. Therfore $x \in S_p$ -ker(A), therefore S_p -ker (A) = ${x \in X: S_pcl({x}) \cap A \neq \phi}$.

Lemma 3.4: Let *X* be a space and $x \in X$. Then $y \in S_p$ -ker({*x*}) if and only if $x \in S_p$ cl({*y*}). **Proof:** Obvious.

Theorem 3.5: Let *X* be a space. Then the following statements are equivalent for any points *x* and *y* in *X*:

- 1. S_p -ker({x}) \neq S_p -ker({y}).
- 2. $S_{p}cl(\{x\}) \neq S_{p}cl(\{y\})$.

Proof: (1) \Rightarrow (2). Let S_p -ker({x}) \neq S_p -ker({y}). Then there exists a point z in X such that $z \in S_p$ -ker({x}) and $z \notin S_p$ -ker({y}) this implies that by [Lemma 3.3] $S_pcl({z}) \cap {x} \neq \phi$, then $x \in S_pcl({z})$ and since $z \notin S_p$ -ker({y}) implies that $S_pcl({z}) \cap {y} = \phi$. But $x \in S_pcl({z})$, then $S_pcl({x}) \subseteq S_pcl({z})$ and since $S_pcl({z}) \cap {y} = \phi$ implies that $S_pcl({z}) \cap {y} = \phi$.

(2) \Rightarrow (1). Let $S_pcl(\{x\}) \neq S_pcl(\{y\})$. Then there exists a point $z \in S_pcl(\{x\})$ and $z \notin S_pcl(\{y\})$ implies that there exists an S_p -open set U in X containing z and x but not y, then $y \notin S_p$ -ker($\{x\}$) and hence S_p -ker($\{x\}) \neq S_p$ -ker($\{y\}$).

Definition 3.6: A space *X* is said to be S_p - R_0 if for each S_p -open set *U* and each $x \in U$, implies S_p cl($\{x\}$) $\subseteq U$.

Definition 3.7: A space *X* is said to be S_p - R_1 if for *x* and *y* in *X* with $S_pcl({x}) \neq S_pcl({y})$, there exists two disjoint S_p -open sets *U* and *V* such that $S_pcl({x}) \subseteq U$ and $S_pcl({y}) \subseteq V$.

Lemma 3.8: If a space *X* is S_p - R_0 space, then for every S_p -open set *U* and each $x \in U$, intcl($\{x\}$) $\subseteq U$.

Proof: Let *X* be S_p - R_0 space. Then by [Definition 3.6] for every S_p -open set *U* and each $x \in U$, $S_pcl(\{x\}) \subseteq U$. But by [Lemma 2.5] $scl(\{x\}) \subseteq S_pcl(\{x\})$ and $scl(\{x\}) = intcl(\{x\}) \cup \{x\}$ by

[Lemma 2.6], this implies that $intcl({x}) \subseteq U$.

Lemma 3.9: Every S_p-R₁ space is S_p-R₀.

Proof: Let *X* be an S_p - R_1 space and *U* be any S_p -open set in *X* with $x \in U$. If $y \notin U$, then $x \notin S_pcl(\{y\})$ implies that $S_pcl(\{x\}) \neq S_pcl(\{y\})$ and since *X* is S_p - R_1 space so by there exists disjoint S_p -open sets *G* and *H* such that $S_pcl(\{x\}) \subseteq G$ and $S_pcl(\{y\}) \subseteq H$. Now $x \notin H$ implies that $y \notin S_pcl(\{x\})$. Thus $S_pcl(\{x\}) \subseteq U$, hence *X* is S_p - R_0 space.

Remark 3.10: The converse of [Lemma 3.9] is not true ingeneral as $X = \{a, b, c, d\}$ and $\tau = \{\phi, X, \{c\}, \{b, d\}, \{b, c, d\}\}$. Then *X* is S_p-R₀ but not S_p-R₁ space since for $a, c \in X$ with S_pcl($\{a\}$) = $\{a\} \neq$ S_pcl($\{c\}$) = $\{c\}$ there does not exist two disjoint S_p-open sets one of them contain S_pcl($\{a\}$) and the other contain S_pcl($\{c\}$).

Fromm [Definition 2.11] and [Definition 2.12] it is clear that every S_p - R_0 is semi- R_0 and every S_p - R_1 is semi- R_1 but the converse of them are not true ingeneral as shown in the following examples:

- 1. Let $X = \{a, b, c, d\}$ and $\tau = \{\phi, X, \{c\}, \{a, b\}, \{a, b, c\}\}$. Then $SO(X) = \{\phi, X, \{c\}, \{a, b\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}\}$ and $S_pO(X) = \{\phi, X, \{a, b\}, \{c, d\}, \{a, b, d\}\}$, now X is semi-R₀ but not S_p -R₀ since $\{a, b, d\} \in S_pO(X)$ while $S_pcl(\{d\}) = \{c, d\}$ is not a subset of $\{a, b, d\}$.
- 2. Let *X* be the same set as defined in (1) and $\tau = \{\phi, X, \{d\}, \{a, c\}, \{a, c, d\}\}$. Then *X* is semi-R₁ but not S_p-R₁.

Theorem 3.11: A space *X* is S_p - R_0 if and only if for every S_p -closed set *F* and $x \notin F$, there exists an S_p -open set *G* such that $x \notin G$ and $F \subseteq G$.

Proof: Let *X* be S_p - R_0 space and *F* be S_p -closed subset of *X* not containing $x \in X$. Then $X \setminus F$ is S_p -open set containing x, since *X* is S_p - R_0 space implies that $S_pcl(\{x\}) \subseteq X \setminus F$ and then $F \subseteq X \setminus S_pcl(\{x\})$. Now let $G = X \setminus S_pcl(\{x\})$, then *G* is S_p -open set not contains x and $F \subseteq G$.

Conversely: Let $x \in G$ where *G* is S_p-open set in *X*. Then $X \setminus G$ is S_p-closed set and $x \notin X \setminus G$ implies that by hypothesis there exists and S_p-open set *U* such that $x \notin U$ and $X \setminus G \subseteq U$. Now $X \setminus U \subseteq G$ and $x \in X \setminus U$, but $X \setminus U$ is S_p-closed set then S_pcl({x}) \subseteq $X \setminus U \subseteq G$ this implies that *X* is S_p-R₀ space.

Theorem 3.12: For a space *X*, the following are equivalent:

- 1. X is S_p - R_0 .
- 2. For any two points *x* and *y* in *X*, $x \in S_pcl(\{y\})$ if and only if $y \in S_pcl(\{x\})$.

Proof: (1) \Rightarrow (2). Let *X* be S_p-R₀ and $x \in$ S_pcl({*y*}. To show $y \in$

 $S_pcl({x})$, let *V* be any S_p -open set containing *y*. Since *X* is S_p-R_0 space so $S_pcl({y}) \subseteq V$ implies that $x \in V$, hence every S_p -open set which containing *y* contains *x* this implies that $y \in$ $S_pcl({x})$. By the same way we can prove that if $y \in S_pcl({x})$, then $x \in S_pcl({y})$

 $(2) \Rightarrow (1)$. Let the hypothesis be satisfied and *U* be any S_p-open set and $x \in U$. To show S_pcl({x}) $\subseteq U$, let $y \in S_pcl({x})$ implies that by hypothesis $x \in S_pcl({y})$, and then $U \cap {y} \neq \emptyset$ this implies that $y \in U$. Thus S_pcl({x}) $\subseteq U$, therefore *X* is S_p-R₀ space.

Theorem 3.13: A space *X* is S_p - R_0 if and only if for any *x* and *y* in *X* if S_p cl({*x*}) $\neq S_p$ cl({*y*}), then S_p cl({*x*}) $\cap S_p$ cl({*y*}) = ϕ .

Proof: Let *X* be S_p - R_0 space and $x, y \in X$ such that $S_pcl(\{x\}) \neq S_pcl(\{y\})$. Then there exists $z \in S_pcl(\{x\})$ such that $z \notin S_pcl(\{y\})$ implies that there exists an S_p -open set *U* containing *z* but not *y*, hence $x \in S_pcl(\{x\})$. Therefore we have $x \notin S_pcl(\{y\})$ implies that $x \in X \setminus S_pcl(\{y\})$ which is an S_p -open set, but *X* is S_p - R_0 so $S_pcl(\{x\}) \subseteq X \setminus S_pcl(\{y\})$ this implies that $S_pcl(\{x\}) \cap S_pcl(\{y\})$.

Conversely: Let the hypothesis be satisfied and let U be any S_p open set in X and $x \in U$. If U = X, then clearly $S_pcl(\{x\}) \subseteq U$, but if $U \neq X$, then there exists $y \in X$ such that $y \notin U$. Now $x \neq y$ and $x \notin S_pcl(\{y\})$ implies that $S_pcl(\{x\}) \neq S_pcl(\{y\})$, then by hypothesis $S_pcl(\{x\}) \cap S_pcl(\{y\}) = \phi$ implies that $y \notin S_pcl(\{x\})$. Thus if $y \notin U$, then $y \notin S_pcl(\{x\})$ this implies that $S_pcl(\{x\}) \subseteq U$. Hence X is S_p - R_0 space.

Theorem 3.14: A space *X* is S_p - R_0 if and only if for any points $x, y \in X$, if S_p -ker({x}) \neq S_p -ker({y}), then S_p -ker({x}) \cap S_p -ker({y}) $= \phi$.

Proof: Let *X* be S_p - R_0 space and $x, y \in X$ such that S_p -ker({x}) $\neq S_p$ -ker({y}). Then by [theorem 3.5] S_p cl({x}) $\neq S_p$ cl({y}), now to show S_p -ker({x}) $\cap S_p$ -ker({y}) $= \phi$, if possible suppose that S_p -ker({x}) $\cap S_p$ -ker({y}) $\neq \phi$ implies that there exist $z \in S_p$ -ker({x}) $\cap S_p$ -ker({y}), then $z \in S_p$ -ker({x}) and $z \in S_p$ -ker({y}) implies that by [Lemma 3.4] $x \in S_p$ cl({z}) and since $x \in S_p$ cl({x}), then by [Theorem 3.13] S_p cl({z}) $= S_p$ cl({y}) similarly S_p cl({z}) $= S_p$ cl({y}) this implies that S_p -ker({y}) is a contradiction, thus S_p -ker({x}) $\cap S_p$ -ker({y}) $= \phi$.

Conversely: Let the hypothesis be satisfied. To show *X* is S_p-R₀ space, let *x*, *y* \in *X* such that S_pcl({*x*}) \neq S_pcl({*y*}), then by [Theorem 3.5] S_p-ker({*x*}) \neq S_p-ker({*y*}) implies that by hypothesis S_p-ker({*x*}) \cap S_p-ker({*y*}) = ϕ which is implies that S_pcl({*x*}) \cap S_pcl({*y*}) = ϕ . Thus by [Theorem 3.13] *X* is S_p-R₀ space.

Theorem 3.15: For a space *X*, the following are equivalent:

- 1. X is S_p - R_0 space.
- 2. For any $A \neq \phi$ and $G \in S_pO(X)$ such that $G \cap A \neq \phi$, there exists an S_p -closed set F such that $A \cap F \neq \phi$ and $F \subseteq G$.

- 3. Any S_p-open set G, $G = \bigcup \{F: F \in S_pC(X) \text{ and } F \subseteq G\}$.
- 4. Any S_p -closed set $F, F = \cap \{G \in S_pO(X): F \subseteq G\}$.
- 5. For any x, $S_pcl({x}) \subseteq S_p-ker({x})$.

Proof: (1) \Rightarrow (2). Let *A* be a non-empty set in *X* and $G \in S_pO(X)$ such that $A \cap G \neq \phi$. Then there exist $x \in A \cap G$ implies that $x \in G$ and since *X* is S_p -R₀ so $S_pcl(\{x\}) \subseteq G$. Let $F = S_pcl(\{x\})$ which is S_p -closed set such that $F \cap G \neq \phi$ and $F \subseteq G$.

(2) \Rightarrow (3). Let *G* be any S_p-open set in *X*. Then clearly $\cup \{F \in S_pC(X): F \subseteq G\} \subseteq G$, and let $x \in G$. Then take $A = \{x\}$ and $A \cap G \neq \phi$ so by hypothesis there exists an S_p-closed set *F* such that $F \subseteq G$ and $x \in F$. Now $x \in F \subseteq \cup \{F \in S_pC(X): F \subseteq G\}$ this implies that $G \subseteq \cup \{F \in S_pC(X): F \subseteq G\}$. Thus $G = \cup \{F: F \in S_pC(X) \text{ and } F \subseteq G\}$.

 $(3) \Rightarrow (4)$. Obvious.

 $(4) \Rightarrow (5)$. Let *x* be any point in the space *X* and $y \notin S_p$ -ker({*x*}). Then there exists an S_p -open set *U* such that $x \in U$ and $y \notin U$ implies that $S_pcl(\{y\}) \cap U = \phi$ and then by hypothesis $\cap \{G \in S_pO(X): S_pcl(\{y\}) \subseteq G\} \cap U = \phi$ this implies that there exists an S_p -open set *G* such that $x \notin G$ and $S_pcl(\{y\}) \subseteq G$. Therefore $S_pcl(\{x\}) \cap G = \phi$ and $y \notin S_pcl(\{x\})$, consequently we obtain $S_pcl(\{x\}) \subseteq S_p$ -ker({*x*}).

 $(5) \Rightarrow (1)$. Let *G* be any S_p-open set in *X* and $x \in G$ and let $y \in S_p$ -ker({*x*}). Then by [Lemma 3.4] $x \in S_p$ cl({*x*}) and $y \in G$. But clearly S_p-ker({*x*}) $\subseteq G$, then by hypothesis S_pcl({*x*}) $\subseteq S_p$ -ker({*x*}) $\subseteq G$ this implies that S_pcl({*x*}) $\subseteq G$. Hence *X* is S_p-R₀ space.

Corollary 3.16: A space *X* is S_p - R_0 if and only if for all $x \in X$ $S_pcl({x}) = S_p-ker({x}).$

Proof: Let *X* be S_p - R_0 . Then by [Theorem 3.15] for any $x \in X$, S_p cl({x}) \subseteq S_p -ker({x}), and now let $y \in S_p$ -ker({x}) implies that by [Lemma 3.4] $x \in S_p$ cl({y}), then S_p cl({x}) $\cap S_p$ cl({y}) $\neq \phi$ implies that by [Theorem 3.13] S_p cl({x}) $= S_p$ cl({y}) and then $y \in S_p$ cl({x}), thus S_p cl({x}) $= S_p$ -ker({x}).

Conversly: Obvious from [Theorem 3.15].

Theorem 3.17: For a space *X*, the following statements are equivalent:

- 1. X is S_p - R_0 space.
- 2. For any S_p -closed set *F*, then $F = S_p$ -ker(*F*).
- 3. If *F* is S_p -closed set and $x \in F$, then S_p -ker({x}) $\subseteq F$.

Proof: (1) \Rightarrow (2). Let *F* be any S_p-closed set in *X* and $x \notin F$. Then *X**F* is S_p-open set contain *x* and since *X* is S_p-R₀ space so S_pcl({*x*}) \subseteq *X**F* implies that S_pcl({*x*}) \cap *F* = ϕ , then by [Lemma 3.3] $x \notin$ S_p-ker(*F*), therefore *F* = S_p-ker(*F*).

(2) \Rightarrow (3). Ingeneral if $A \subseteq B$, then S_p -ker(A) \subseteq S_p -ker(B) so from (2) if $x \in F$, where F is S_p -closed in X, then S_p -ker($\{x\}$) \subseteq S_p -ker(F) = F implies that S_p -ker($\{x\}$) \subseteq F.

(3) ⇒ (1). Let $x, y \in X$ and $x \in S_pcl(\{y\})$, then by [Lemma 3.4] $y \in S_p-ker(\{x\})$ and since $x \in S_pcl(\{x\})$, but $S_pcl(\{x\})$ is $S_p-closed$ set so by (3) $S_p-ker(\{x\}) \subseteq S_pcl(\{x\})$ this implies that $y \in S_pcl(\{x\})$ and for the converse it is obvious. Thus by [Theo-

IJSER © 2013 http://www.ijser.org rem 3.12] X is S_p-R₀ space.

Corollary 3.18: A space *X* is S_p - R_1 if and only if for any two points $x, y \in X$ such that S_p -ker({x}) $\neq S_p$ -ker({y}), there exist disjoint S_p -open sets *U* and *V* such that S_p cl({x}) $\subseteq U$ and S_p cl({y}) $\subseteq V$.

Proof: Let *X* be S_p - R_1 space and $x, y \in X$ such that S_p -ker({*x*}) \neq S_p -ker({*y*}). Then by [Theoren 3.5] S_p cl({*x*}) \neq S_p cl({*y*}), then there exist two disjoint S_p -open set *U* and *V* such that S_p cl({*x*}) $\subseteq U$ and S_p cl({*y*}) $\subseteq V$.

Conversely: Let $x, y \in X$ such that $S_pcl({x}) \neq S_pcl({y})$. Then by [Theoren 3.5] S_p -ker({x}) $\neq S_p$ -ker({y}) implies that by hypothesis there exist two disjoint S_p -open sets U and V such that $S_pcl({x}) \subseteq U$ and $S_pcl({y}) \subseteq V$. Thus X is S_p - R_1 space.

Theorem 3.19: A space *X* is S_p - T_1 if and only if it is S_p - T_0 and S_p - R_0 .

Proof: Let *X* be S_p - T_1 space. Then from [Definition 2.8] and [Definition 2.7] *X* is S_p - T_0 and by [Theorem 2.10] every singlten set in *X* is S_p -closed. Now *X* is S_p - R_0 space since for any $x \in G$, where *G* is S_p -open set, S_p cl({x}) = {x} $\subseteq G$. Thus the space *X* is S_p - T_0 and S_p - R_0 .

Conversley: Let $x, y \in X$ be any two distinct points. Since X is S_p - T_0 space so there exists an S_p -open set U such that $x \in U$ and $y \notin U$ or $y \in U$ and $x \notin U$. Now let $x \in U$ and $y \notin U$ and since X is S_p - R_0 space so $S_pcl({x}) \subseteq U$ and we have $y \notin U$ implies that $y \notin S_pcl({x})$, then $y \in X \setminus S_pcl({x})$ which is S_p -open set so take $V = X \setminus S_pcl({x})$. Thus U and V are S_p -open sets in X such that $x \in U$, $y \in V$ and $x \notin V$ and $y \notin U$, implies that X is S_p - T_1 space.

Theorem 3.20: A space *X* is S_p - T_2 if and only if it is S_p - R_1 and S_p - T_0 .

Proof: Let *X* be S_p - T_2 . Then from Definition 2.9 and Definition 2.7 *X* is S_p - T_0 and to show *X* is S_p - R_1 space let $x, y \in X$ such that $S_pcl({x}) \neq S_pcl({y})$ and since *X* is S_p - T_1 space so by [Theorem 2.10] every singleton set in *X* is S_p -closed, that is meaning $S_pcl({x}) = {x}$ and $S_pcl({y}) = {y}$ implies that ${x} \neq {y}$ and since *X* is S_p - T_2 space so there exist two disjoint S_p -open sets *U* and *V* such that $x \in U$ and $y \in V$ implies that $S_pcl({x}) \subseteq U$ and $S_pcl({y}) \subseteq V$. Thus *X* is S_p - R_1 space.

Conversely: Let *X* be S_p - R_1 and S_p - T_0 space and $x, y \in X$ such that $x \neq y$. Now since *X* is S_p - T_0 so by [Definition 2.7] there exist an S_p -open set *U* such that $x \in U$ and $y \notin U$ or $y \in U$ and $x \notin U$, take $x \in U$ and $y \notin U$ implies that $U \cap \{y\} = \phi$, and then $x \notin S_pcl(\{y\})$ this implies that $S_pcl(\{x\}) \neq S_pcl(\{y\})$ and since *X* is S_p - R_1 so there exist two disjoint S_p -open sets *U* and *V* such that $S_pcl(\{x\}) \subseteq U$ and $S_pcl(\{y\}) \subseteq V$ implies that $x \in U$ and $y \notin V$. Thus *X* is S_p - T_2 space.

Definition 3.21: [1] A filterbase *F* is said to be S_p -converges to a point $x \in X$, if for each S_p -open set *U* containing *x*, there exists $B \in F$ such that $B \subseteq U$.

Lemma 3.22: Let *X* be a space and let *x* and *y* be any two points in *X* such that every net in *X* S_p-converging to *y* S_p-converging to *x*, then $x \in S_pcl(\{y\})$.

Proof: Let $x_n = y$ for all $n \in N$. Then $\{x_n\}_{n \in N}$ is a net in $S_{pcl}(\{y\})$, clearly $\{x_n\}_{n \in N}$ is S_{p} -converges to y and then by the

hypothesis $\{x_n\}_{n \in \mathbb{N}}$ is S_p-converges to *x* this implies that $x \in S_pcl(\{y\})$.

Theorem 3.23: For a space *X*, the following statements are equivalent:

- 1. X is S_p - R_0 space.
- 2. If $x, y \in X$, then $y \in S_pcl(\{x\})$ if and only if every net in $X S_p$ -converging to $y S_p$ -converging to x.

Proof: (1) \Rightarrow (2). Let $x, y \in X$ such that $y \in S_{p}cl(\{x\})$ and let $\{x_{\alpha}\}_{\alpha \in \Delta}$ be a net in X such that S_{p} -converges to y. Since $y \in S_{p}cl(\{x\})$, then by [Theorem 3.13] $S_{p}cl(\{x\}) = S_{p}cl(\{y\})$ implies that $x \in S_{p}cl(\{y\})$ and then $\{x_{\alpha}\}_{\alpha \in \Delta}$ is S_{p} -converges to x.

Conversely: Let $x, y \in X$ such that every net in X S_p-converging to y S_p-converging to x. Then by [Lemma 3.22] $x \in$ S_pcl({y}) and by [Theorem 3.13] we have S_pcl({x}) = S_pcl({y}) this implies that $y \in$ S_pcl({x}).

 $(2) \Rightarrow (1)$. Let $x, y \in X$ such that $S_{p}cl(\{x\}) \cap S_{p}cl(\{y\}) \neq \phi$. Then there exist $w \in S_{p}cl(\{x\}) \cap S_{p}cl(\{y\})$ implies that there exist a net $\{x_{\alpha}\}_{\alpha \in \Delta}$ in $S_{p}cl(\{x\})$ such that $\{x_{\alpha}\}_{\alpha \in \Delta}$ is S_{p} -converges to wand since $w \in S_{p}cl(\{y\})$, then by hypothesis $\{x_{\alpha}\}_{\alpha \in \Delta}$ is S_{p} converges to y this implies that $y \in S_{p}cl(\{x\})$. By the same token we obtain that $x \in S_{p}cl(\{y\})$ implies that $S_{p}cl(\{x\}) =$ $S_{p}cl(\{y\})$ and then by [Theorem 3.13] X is S_{p} -R₀ space.

REFERENCES

- Shareef H. A., "Sp-open sets, Sp-continuity and Sp-compactness in topologi-cal spaces", M. Sc. Thesis, College of Science, Sulaimani University 2007.
- [2] C. Dorset, "Semi-T₁, Semi-R₁ and Semi-R₀ Topological Spaces", Ann. Soc. Sci. Bruxelles, Vol. 92, 143-150, 1978.
- [3] S. N. Maheshwari and R. Prasad, "On (R₀)s-spaces", Portug. Math.,. Vol 34, pp. 213-217, 1975.
- [4] A. S. Davis, "Indexed Systems of Neighborhoods for General Topological Spaces", *The American Mathematical Monthly*, Vol. 68, No. 9, pp. 886-893, 1961.
- [5] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, "On precontinuous and weak precontinuous mapping", *Proc. Math. Phys. Soc. Egypt*, Vol. 53, pp. 47-53, 1982.
- [6] N. A. Shanin, "On separation in topological spaces", Dokl. Akad. Nauk. SSSR, Vol. 38, pp. 110-113, 1943.
- [7] N. Levine, "Semi-open sets and semi-continuity in topological spaces", Amer. Math. Monthly, Vol. 70, pp. 36-41, 1963.
- [8] Ahmed N. K., "On some types of separation axioms", M. Sc. Thesis, College of Science, Salahaddin University 1990.
- [9] Khalaf A. B. and Shreef H. A., "S_P-separation axioms", International Journal of Sientific and Engineering Research, Vol. 3, Issue 10, 2012.