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Sp-R0 and Sp-R1 Spaces 
Hardi A. Shareef 

 

Abstract— The purpose of this paper is to introduce two new classes of separation axioms by using the class of Sp-open sets called Sp-R0 

and Sp-R1 topological spaces. Also investigate some of their characterization and fundamental properties of them and relationship of them 

with other separation axioms. 

Index Terms — semi-open sets, Sp-open sets, Sp-closure, Sp-R0 and Sp-R1.   
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1 INTRODUCTION                                                                     

he notion of Sp-open sets was introduced by Shareef H. A.  
in 2007 [M. Sc. Hardi] [1]. In 1963, N. Levine [7] offered a 
new notion to the field of general topology by introducing 

semi-open sets and defined this notion by utilizing the known 
notion of closure of an open set. Since the advent of this no-
tion, several new notions are defined in terms of semi-open 
sets of which two are semi-R0 and semi-R1 introduced by S. N. 
Maheshwari and R. Prasad [3] and C. Dorsett [2], respectively. 
These two notions are defined as natural generalizations of the 
separation axioms R0 which introduced by N. A. Shanin [6] in 
1943 and R1 by A. S. Davis [4] in 1961. In 1982 the notion of 
preopen sets was introduced by A. S. Mashhour et al. [5]. In 
this paper I study and introducing the mentioned separation 
axioms of topological spaces in terms of Sp-open sets called Sp-
R0 and Sp-R1. 
  

2 PRELIMINARIES 

Throughout this paper 𝑋 and 𝑌 will be denote topological 
spaces. If 𝐴 is a subset of 𝑋, then the closure and interior of 𝐴 
in 𝑋 are deonted by cl(𝐴) and int(𝐴) respectively. The Sp-
closure of 𝐴 is denoted by Spcl(𝐴). While scl(𝐴) denote the 
semi-closure of 𝐴. SpO(𝑋) denote the family of all Sp-open sets 
in the space 𝑋. 
 
Definition 2.1: A subset 𝐴 of a space 𝑋 is said to be: 

1. Semi-open set [7], if 𝐴 ⊆ clint(𝐴).  
2. Preopen set [5], if 𝐴 ⊆ intcl(𝐴). 

 
The following definition and results are from [1]. 

 
Definition 2.2: A semi-open set 𝐴 of a space 𝑋 is called             
Sp-open set if for each 𝑥 ∈ 𝐴, there exists a preclosed set 𝐹 such 
that 𝑥 ∈ 𝐹 ⊆ 𝐴. 

 
Definition 2.3: A subset 𝑁 of a space 𝑋 is said to be                   

Sp-neighborhood (Sp-nbhd) of a point 𝑥 ∈ 𝑋, if there exists an 
Sp-open set 𝑈 such that 𝑥 ∈ 𝑈 ⊆ 𝑁. 
 
Definition 2.4: Let 𝑋 a space and 𝐴 ⊆ 𝑋, then Sp-closure of 𝐴 is 
the intersection of all Sp-closed sets which containing 𝐴. 
 
Lemma 2.5: Let 𝐴 and 𝐵 be subsets of a space 𝑋, then: 

1. Spcl(𝐴) is the smallest Sp-closed set containing 𝐴. 
2. 𝐴 is Sp-closed set if and only if 𝐴 = Spcl(𝐴). 
3. If 𝐴 ⊆ 𝐵, then Spcl(𝐴) ⊆ Spcl(𝐵). 
4. scl(𝐴) ⊆ Spcl(𝐴). 

 
Lemma 2.6: [8] For any subset 𝐴 of a space 𝑋, scl(𝐴) = 
intcl(𝐴) ∪ 𝐴. 
 
 The following are from [9]. 
Definition 2.7: A space 𝑋 is said to be Sp-T0 space if for each 
pair of distinct points in 𝑋, there exists an Sp-open set in 𝑋 con-
taining one of them and not the other. 
 
Definition 2.8: A space 𝑋 is said to be Sp-T1 space if for each 
pair of distinct points 𝑥 and 𝑦 in 𝑋, there exists two Sp-open 
sets 𝑈 and 𝑉 in 𝑋 containing 𝑥 and 𝑦 respectively such that 
𝑦 ∉ 𝑈 and 𝑥 ∉ 𝑉. 
 
Definition 2.9: A space X is said to be Sp-T2 space if for each 
pair of distinct points x and y in X, there exists two disjoint Sp-
open sets U and V in X such that x ∈ U and y ∈ V. 
 
Theorem 2.10: A space 𝑋 is Sp-T1 if and only if every singleton 
subset of 𝑋 is Sp-closed. 
 
Definition 2.11: [3] A space 𝑋 is said to be semi-R0 if for each 
semi-open set 𝑈 and 𝑥 ∈ 𝑈, scl({𝑥}) ∈ 𝑈. 
 
Definition 2.12: [2] A space 𝑋 is said to be semi-R1 if for each 
𝑥, 𝑦 ∈ 𝑋 such that scl({𝑥}) ≠ scl({𝑦}), then there exist disjoint 
semi-open sets 𝑈 and 𝑉 such that scl({𝑥}) ⊆ 𝑈 and scl({𝑦}) ⊆
𝑉. 

3 SP-R0 AND SP-R1 SPACES 

Definition 3.1: Let 𝐴 be subset of a space 𝑋. The Sp-kernel of 𝐴, 

denoted by Sp-ker (𝐴), is defined to be the set                                   

T 
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Sp-ker(𝐴) = ∩ {𝑈 ∈ SpO(𝑋):𝐴 ⊆ 𝑈}. 

 

Definition 3.2: Let 𝑥 be a point of a space 𝑋. The The Sp-kernel 

of 𝑥, denoted by Sp-ker ({𝑥}), is defined to be the set                                   

Sp-ker({𝑥}) = ∩ {𝑈 ∈ SpO(𝑋): 𝑥 ∈ 𝑈}. 

 
Lemma 3.3: Let X be a space and A ⊆ X. Then                                     

Sp-ker(A) = {x ∈ X: Spcl({x}) ∩ A ≠ ϕ}.  

Proof: Let 𝑥 ∈ Sp-ker (𝐴) and Spcl({𝑥}) ∩ 𝐴 =  𝜙. Then 

𝑥 ∉ 𝑋\Spcl({𝑥}) which is an Sp-open set containing 𝐴 this is a 

contradiction, so Spcl({𝑥}) ∩ 𝐴 ≠  𝜙. 

Now  let Spcl({𝑥}) ∩ 𝐴 ≠  𝜙 and 𝑥 ∉ Sp-ker (𝐴). Then there exists 

an Sp-open set 𝑈 containing 𝐴 and 𝑥 ∉ 𝑈, and since                  

Spcl({𝑥}) ∩ 𝐴 ≠  𝜙 so let 𝑦 ∈ Spcl({𝑥}) ∩ 𝐴. Since 𝐴 ⊆ 𝑈, then 𝑈 is 

Sp-nbhd of 𝑦 and since 𝑦 ∈ Spcl({𝑥}), then 𝑈 ∩ {𝑥} ≠ 𝜙 which is a 

contradiction. Therfore 𝑥 ∈ Sp-ker (𝐴), therefore Sp-ker (𝐴) =

{𝑥 ∈ 𝑋: Spcl({𝑥}) ∩ 𝐴 ≠ 𝜙}. 

 

Lemma 3.4: Let 𝑋 be a space and 𝑥 ∈ 𝑋. Then 𝑦 ∈ Sp-ker ({𝑥}) if 

and only if x ∈ Spcl({y}). 

Proof: Obvious. 

 

Theorem 3.5: Let 𝑋 be a space. Then the following statements 

are equivalent for any points 𝑥 and 𝑦 in 𝑋: 

1. Sp-ker({𝑥}) ≠ Sp-ker({𝑦}). 

2. Spcl({𝑥}) ≠ Spcl({𝑦}).  

Proof: (1) ⇒ (2). Let Sp-ker({𝑥}) ≠ Sp-ker({𝑦}). Then there ex-

ists a point 𝑧 in 𝑋 such that 𝑧 ∈ Sp-ker({𝑥}) and 𝑧 ∉ Sp-ker({𝑦}) 

this implies that by [Lemma 3.3] Spcl({𝑧}) ∩ {𝑥} ≠ 𝜙, then 𝑥 ∈ 

Spcl({𝑧}) and since 𝑧 ∉ Sp-ker({𝑦}) implies that Spcl({𝑧}) ∩

{𝑦} = 𝜙. But 𝑥 ∈ Spcl({𝑧}), then Spcl({𝑥}) ⊆ Spcl({𝑧}) and since 

Spcl({𝑧}) ∩ {𝑦} = 𝜙 implies that Spcl({𝑥}) ≠ Spcl({𝑦}). 

(2) ⇒ (1). Let Spcl({𝑥}) ≠ Spcl({𝑦}). Then there exists a point                            

𝑧 ∈ Spcl({𝑥}) and 𝑧 ∉ Spcl({𝑦}) implies that there exists an             

Sp-open set 𝑈 in 𝑋 containing 𝑧 and 𝑥 but not 𝑦, then                

𝑦 ∉ Sp-ker({𝑥}) and hence Sp-ker({𝑥}) ≠ Sp-ker({𝑦}). 

 

Definition 3.6: A space 𝑋 is said to be Sp-R0 if for each Sp-open 

set 𝑈 and each 𝑥 ∈ 𝑈, implies Spcl({𝑥}) ⊆ 𝑈. 

 

Definition 3.7: A space 𝑋 is said to be Sp-R1 if for 𝑥 and 𝑦 in 𝑋 

with Spcl({𝑥}) ≠ Spcl({𝑦}), there exists two disjoint Sp-open sets 

𝑈 and 𝑉 such that Spcl({𝑥}) ⊆ 𝑈 and Spcl({𝑦}) ⊆ 𝑉.  

 

Lemma 3.8: If a space 𝑋 is Sp-R0 space, then for every Sp-open 

set 𝑈 and each 𝑥 ∈ 𝑈, intcl({𝑥}) ⊆ 𝑈. 

Proof: Let 𝑋 be Sp-R0 space. Then by [Definition 3.6] for every 

Sp-open set 𝑈 and each 𝑥 ∈ 𝑈, Spcl({𝑥}) ⊆ 𝑈. But by [Lemma 

2.5] scl({𝑥}) ⊆ Spcl({𝑥}) and scl({𝑥}) = intcl({𝑥}) ∪ {𝑥} by 

[Lemma 2.6], this implies that intcl({𝑥}) ⊆ 𝑈.  

 

Lemma 3.9: Every Sp-R1 space is Sp-R0. 

Proof: Let 𝑋 be an Sp-R1 space and 𝑈 be any Sp-open set in 𝑋 

with 𝑥 ∈ 𝑈. If 𝑦 ∉ 𝑈, then 𝑥 ∉ Spcl({𝑦}) implies that Spcl({𝑥}) ≠ 

Spcl({𝑦}) and since 𝑋 is Sp-R1 space so by there exists disjoint 

Sp-open sets 𝐺 and 𝐻 such that Spcl({𝑥}) ⊆ 𝐺 and Spcl({𝑦}) ⊆

𝐻. Now 𝑥 ∉ 𝐻 implies that 𝑦 ∉ Spcl({𝑥}). Thus Spcl({𝑥}) ⊆ 𝑈, 

hence 𝑋 is Sp-R0 space. 

 

Remark 3.10: The converse of [Lemma 3.9] is not true ingen-

eral as 𝑋 = {𝑎, 𝑏, 𝑐, 𝑑} and 𝜏 = {𝜙,𝑋, {𝑐}, {𝑏, 𝑑}, {𝑏, 𝑐, 𝑑}}. Then 𝑋 

is Sp-R0 but not Sp-R1 space since for 𝑎, 𝑐 ∈ 𝑋 with Spcl({𝑎}) =

{𝑎} ≠ Spcl({𝑐}) = {𝑐} there does not exist two disjoint Sp-open 

sets one of them contain Spcl({𝑎}) and the other contain 

Spcl({𝑐}). 

 

 Fromm [Definition 2.11] and [Definition 2.12] it is clear that 

every Sp-R0 is semi-R0 and every Sp-R1 is semi-R1 but the           

converse of them are not true ingeneral as shown in the               

following examples: 

1. Let 𝑋 = {𝑎, 𝑏, 𝑐, 𝑑} and 𝜏 = {𝜙, 𝑋, {𝑐}, {𝑎, 𝑏}, {𝑎, 𝑏, 𝑐}}. 

Then SO(𝑋) = {𝜙, 𝑋, {𝑐}, {𝑎, 𝑏}, {𝑐, 𝑑}, {𝑎, 𝑏, 𝑐}, {𝑎, 𝑏, 𝑑}} 

and SpO(𝑋) = {𝜙, 𝑋, {𝑎, 𝑏}, {𝑐, 𝑑}, {𝑎, 𝑏, 𝑑}}, now 𝑋 is 

semi-R0 but not Sp-R0 since {𝑎, 𝑏, 𝑑} ∈ SpO(𝑋) while 

Spcl({𝑑}) = {𝑐, 𝑑} is not a subset of {𝑎, 𝑏, 𝑑}. 

2. Let 𝑋 be the same set as defined in (1) and                     

𝜏 = {𝜙,𝑋, {𝑑}, {𝑎, 𝑐}, {𝑎, 𝑐, 𝑑}}. Then 𝑋 is semi-R1 but not 

Sp-R1. 

 

Theorem 3.11: A space 𝑋 is Sp-R0 if and only if for every             

Sp-closed set 𝐹 and 𝑥 ∉ 𝐹, there exists an Sp-open set 𝐺 such 

that 𝑥 ∉ 𝐺 and 𝐹 ⊆ 𝐺. 

Proof: Let 𝑋 be Sp-R0 space and 𝐹 be Sp-closed subset of 𝑋 not 

containing 𝑥 ∈ 𝑋. Then 𝑋\𝐹 is Sp-open set containing 𝑥, since 𝑋 

is Sp-R0 space implies that Spcl({𝑥}) ⊆ 𝑋\𝐹 and then                    

𝐹 ⊆ 𝑋\Spcl({𝑥}). Now let 𝐺 = 𝑋\Spcl({𝑥}), then 𝐺 is Sp-open set 

not contains 𝑥 and 𝐹 ⊆ 𝐺. 

Conversely: Let 𝑥 ∈ 𝐺 where 𝐺 is Sp-open set in 𝑋. Then 𝑋\𝐺 is 

Sp-closed set and 𝑥 ∉ 𝑋\𝐺 implies that by hypothesis there 

exists and Sp-open set 𝑈 such that 𝑥 ∉ 𝑈 and 𝑋\𝐺 ⊆ 𝑈. Now 

𝑋\𝑈 ⊆ 𝐺 and 𝑥 ∈ 𝑋\𝑈, but 𝑋\𝑈 is Sp-closed set then Spcl({𝑥}) ⊆

𝑋\𝑈 ⊆ 𝐺 this implies that 𝑋 is Sp-R0 space.  

 

Theorem 3.12: For a space 𝑋, the following are equivalent: 

1. 𝑋 is Sp-R0. 

2. For any two points 𝑥 and 𝑦 in 𝑋, 𝑥 ∈ Spcl({𝑦}) if and 

only if 𝑦 ∈ Spcl({𝑥}). 

Proof: (1) ⇒ (2). Let 𝑋 be Sp-R0 and 𝑥 ∈ Spcl({𝑦}. To show 𝑦 ∈ 
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Spcl({𝑥}), let 𝑉 be any Sp-open set containing 𝑦. Since 𝑋 is Sp-R0 

space so Spcl({𝑦}) ⊆ 𝑉 implies that 𝑥 ∈ 𝑉, hence every Sp-open 

set which containing 𝑦 contains 𝑥 this implies that 𝑦 ∈ 

Spcl({𝑥}). By the same way we can prove that if 𝑦 ∈ Spcl({𝑥}, 

then 𝑥 ∈ Spcl({𝑦}  

(2) ⇒ (1). Let the hypothesis be satisfied and 𝑈 be any Sp-open 

set and 𝑥 ∈ 𝑈. To show Spcl({𝑥}) ⊆ 𝑈, let 𝑦 ∈ Spcl({𝑥}) implies 

that by hypothesis 𝑥 ∈ Spcl({𝑦}), and then 𝑈 ∩ {𝑦} ≠ ∅ this im-

plies that 𝑦 ∈ 𝑈. Thus Spcl({𝑥}) ⊆ 𝑈, therefore 𝑋 is Sp-R0 space.  

 

Theorem 3.13: A space 𝑋 is Sp-R0 if and only if for any 𝑥 and 𝑦 

in 𝑋 if Spcl({𝑥}) ≠ Spcl({𝑦}), then Spcl({𝑥}) ∩ Spcl({𝑦}) = 𝜙. 

Proof: Let 𝑋 be Sp-R0 space and 𝑥, 𝑦 ∈ 𝑋 such that Spcl({𝑥}) ≠ 

Spcl({𝑦}). Then there exists 𝑧 ∈ Spcl({𝑥}) such that 𝑧 ∉ Spcl({𝑦}) 

implies that there exists an Sp-open set 𝑈 containing 𝑧 but not 

𝑦, hence 𝑥 ∈ Spcl({𝑥}). Therefore we have 𝑥 ∉ Spcl({𝑦}) implies 

that 𝑥 ∈ 𝑋\Spcl({𝑦}) which is an Sp-open set, but 𝑋 is Sp-R0 so 

Spcl({𝑥}) ⊆ 𝑋\Spcl({𝑦}) this implies that Spcl({𝑥}) ∩ Spcl({𝑦}). 

Conversely: Let the hypothesis be satisfied and let 𝑈 be any Sp-

open set in 𝑋 and 𝑥 ∈ 𝑈. If 𝑈 = 𝑋, then clearly Spcl({𝑥}) ⊆ 𝑈, 

but if 𝑈 ≠ 𝑋, then there exists 𝑦 ∈ 𝑋 such that 𝑦 ∉ 𝑈. Now 

𝑥 ≠ 𝑦 and 𝑥 ∉ Spcl({𝑦}) implies that Spcl({𝑥}) ≠ Spcl({𝑦}), then 

by hypothesis Spcl({𝑥}) ∩ Spcl({𝑦}) = 𝜙 implies that 𝑦 ∉ 

Spcl({𝑥}). Thus if 𝑦 ∉ 𝑈, then 𝑦 ∉ Spcl({𝑥}) this implies that 

Spcl({𝑥}) ⊆ 𝑈. Hence 𝑋 is Sp-R0 space. 

 

Theorem 3.14: A space 𝑋 is Sp-R0 if and only if for any points 

𝑥, 𝑦 ∈ 𝑋, if Sp-ker({𝑥}) ≠ Sp-ker({𝑦}), then Sp-ker({𝑥}) ∩ Sp-

ker({𝑦}) = 𝜙.       

Proof: Let 𝑋 be Sp-R0 space and 𝑥, 𝑦 ∈ 𝑋 such that Sp-ker({𝑥}) ≠ 

Sp-ker({𝑦}). Then by [theorem 3.5] Spcl({𝑥}) ≠ Spcl({𝑦}), now 

to show Sp-ker({𝑥}) ∩ Sp-ker({𝑦}) = 𝜙, if possible suppose that 

Sp-ker({𝑥}) ∩ Sp-ker({𝑦}) ≠ 𝜙 implies that there exist                  

𝑧 ∈ Sp-ker({𝑥}) ∩ Sp-ker({𝑦}), then 𝑧 ∈ Sp-ker({𝑥}) and 𝑧 ∈ Sp-

ker({𝑦}) implies that by [Lemma 3.4] 𝑥 ∈ Spcl({𝑧}) and since 

𝑥 ∈ Spcl({𝑥}), then by [Theorem 3.13] Spcl({𝑧}) = Spcl({𝑥}) simi-

larly Spcl({𝑧}) = Spcl({𝑦}) this implies that Spcl({𝑥}) = Spcl({𝑦}) 

is a contradiction, thus Sp-ker({𝑥}) ∩ Sp-ker({𝑦}) = 𝜙. 

Conversely: Let the hypothesis be satisfied. To show 𝑋 is Sp-R0 

space, let 𝑥, 𝑦 ∈ 𝑋 such that Spcl({𝑥}) ≠ Spcl({𝑦}), then by [The-

orem 3.5] Sp-ker({𝑥}) ≠ Sp-ker({𝑦}) implies that by hypothesis 

Sp-ker({𝑥}) ∩ Sp-ker({𝑦}) = 𝜙 which is implies that Spcl({𝑥}) ∩ 

Spcl({𝑦}) = 𝜙. Thus by [Theorem 3.13] 𝑋 is Sp-R0 space. 

 

Theorem 3.15: For a space 𝑋, the following are equivalent: 

1. 𝑋 is Sp-R0 space. 

2. For any 𝐴 ≠ 𝜙 and 𝐺 ∈ SpO(𝑋) such that 𝐺 ∩ 𝐴 ≠ 𝜙, 

there exists an Sp-closed set 𝐹 such that 𝐴 ∩ 𝐹 ≠ 𝜙 and 

𝐹 ⊆ 𝐺. 

3. Any Sp-open set 𝐺, 𝐺 = ∪ {𝐹: 𝐹 ∈ SpC(𝑋) and 𝐹 ⊆ 𝐺}. 

4. Any Sp-closed set 𝐹, 𝐹 =∩ {𝐺 ∈ SpO(𝑋): 𝐹 ⊆ 𝐺}. 

5. For any 𝑥, Spcl({𝑥}) ⊆ Sp-ker({𝑥}). 

Proof: (1) ⇒ (2). Let 𝐴 be a non-empty set in 𝑋 and 𝐺 ∈ SpO(𝑋) 

such that 𝐴 ∩ 𝐺 ≠ 𝜙. Then there exist 𝑥 ∈ 𝐴 ∩ 𝐺 implies that 

𝑥 ∈ 𝐺 and since 𝑋 is Sp-R0 so Spcl({𝑥}) ⊆ 𝐺. Let 𝐹 = Spcl({𝑥}) 

which is Sp-closed set such that 𝐹 ∩ 𝐺 ≠ 𝜙 and 𝐹 ⊆ 𝐺. 

(2) ⇒ (3). Let 𝐺 be any Sp-open set in 𝑋. Then clearly                                   

∪ {𝐹 ∈ SpC(𝑋): 𝐹 ⊆ 𝐺} ⊆ 𝐺, and let 𝑥 ∈ 𝐺. Then take 𝐴 = {𝑥} 

and 𝐴 ∩ 𝐺 ≠ 𝜙 so by hypothesis there exists an Sp-closed set 𝐹 

such that 𝐹 ⊆ 𝐺 and 𝑥 ∈ 𝐹. Now 𝑥 ∈ 𝐹 ⊆ ∪ {𝐹 ∈ SpC(𝑋): 𝐹 ⊆ 𝐺} 

this implies that 𝐺 ⊆∪ {𝐹 ∈ SpC(𝑋):𝐹 ⊆ 𝐺}. Thus 𝐺 =∪ {𝐹: 𝐹 ∈ 

SpC(𝑋) and 𝐹 ⊆ 𝐺}. 

(3) ⇒ (4). Obvious. 

(4) ⇒ (5). Let 𝑥 be any point in the space 𝑋 and 𝑦 ∉ Sp-ker({𝑥}). 

Then there exists an Sp-open set 𝑈 such that 𝑥 ∈ 𝑈 and 𝑦 ∉ 𝑈 

implies that Spcl({𝑦}) ∩ 𝑈 = 𝜙 and then by hypothesis ∩ {𝐺 ∈ 

SpO(𝑋): Spcl({𝑦}) ⊆ 𝐺} ∩ 𝑈 = 𝜙 this implies that there exists an 

Sp-open set 𝐺 such that 𝑥 ∉ 𝐺 and Spcl({𝑦}) ⊆ 𝐺. Therefore 

Spcl({𝑥}) ∩ 𝐺 = 𝜙 and 𝑦 ∉ Spcl({𝑥}), consequently we obtain 

Spcl({𝑥}) ⊆ Sp-ker({𝑥}). 

(5) ⇒ (1). Let 𝐺 be any Sp-open set in 𝑋 and 𝑥 ∈ 𝐺 and let                         

𝑦 ∈ Sp-ker({𝑥}). Then by [Lemma 3.4] 𝑥 ∈ Spcl({𝑥}) and 𝑦 ∈ 𝐺. 

But clearly Sp-ker({𝑥}) ⊆ 𝐺, then by hypothesis Spcl({𝑥}) ⊆ Sp-

ker({𝑥}) ⊆ 𝐺 this implies that Spcl({𝑥}) ⊆ 𝐺. Hence 𝑋 is Sp-R0 

space. 

 

Corollary 3.16: A space 𝑋 is Sp-R0 if and only if for all 𝑥 ∈ 𝑋 

Spcl({𝑥}) = Sp-ker({𝑥}). 

Proof: Let 𝑋 be Sp-R0. Then by [Theorem 3.15] for any 𝑥 ∈ 𝑋, 

Spcl({𝑥}) ⊆ Sp-ker({𝑥}), and now let 𝑦 ∈ Sp-ker({𝑥}) implies 

that by [Lemma 3.4] 𝑥 ∈ Spcl({𝑦}), then Spcl({𝑥}) ∩ Spcl({𝑦}) ≠

𝜙 implies that by [Theorem 3.13] Spcl({𝑥}) = Spcl({𝑦}) and then 

𝑦 ∈ Spcl({𝑥}), thus Spcl({𝑥}) = Sp-ker({𝑥}). 

Conversly: Obvious from [Theorem 3.15]. 

 
Theorem 3.17: For a space 𝑋, the following statements are 
equivalent: 

1. 𝑋 is Sp-R0 space. 
2. For any Sp-closed set 𝐹, then 𝐹 = Sp-ker(𝐹). 
3. If 𝐹 is Sp-closed set and 𝑥 ∈ 𝐹, then Sp-ker({𝑥}) ⊆ 𝐹. 

Proof: (1) ⇒ (2). Let 𝐹 be any Sp-closed set in 𝑋 and 𝑥 ∉ 𝐹. 
Then 𝑋\𝐹 is Sp-open set contain 𝑥 and since 𝑋 is Sp-R0 space so 
Spcl({𝑥}) ⊆ 𝑋\𝐹 implies that Spcl({𝑥}) ∩ 𝐹 = 𝜙, then by [Lem-
ma 3.3] 𝑥 ∉ Sp-ker(𝐹), therefore 𝐹 = Sp-ker(𝐹). 
(2) ⇒ (3). Ingeneral if 𝐴 ⊆ 𝐵, then Sp-ker(𝐴) ⊆ Sp-ker(𝐵) so 
from (2) if 𝑥 ∈ 𝐹, where 𝐹 is Sp-closed in 𝑋, then Sp-ker({𝑥}) ⊆ 
Sp-ker(𝐹) = 𝐹 implies that Sp-ker({𝑥}) ⊆ 𝐹. 
(3) ⇒ (1). Let 𝑥, 𝑦 ∈ 𝑋 and 𝑥 ∈ Spcl({𝑦}), then by [Lemma 3.4]               
𝑦 ∈ Sp-ker({𝑥}) and since 𝑥 ∈ Spcl({𝑥}), but Spcl({𝑥}) is                
Sp-closed set so by (3) Sp-ker({𝑥}) ⊆ Spcl({𝑥}) this implies that 
𝑦 ∈ Spcl({𝑥}) and for the converse it is obvious. Thus by [Theo-
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rem 3.12] 𝑋 is Sp-R0 space. 
Corollary 3.18: A space 𝑋 is Sp-R1 if and only if for any two 
points 𝑥, 𝑦 ∈ 𝑋 such that Sp-ker({𝑥}) ≠ Sp-ker({𝑦}), there exist 
disjoint Sp-open sets 𝑈 and 𝑉 such that Spcl({𝑥}) ⊆ 𝑈 and 
Spcl({𝑦}) ⊆ 𝑉.  
Proof: Let 𝑋 be Sp-R1 space and 𝑥, 𝑦 ∈ 𝑋 such that Sp-ker({𝑥}) ≠ 
Sp-ker({𝑦}). Then by [Theoren 3.5] Spcl({𝑥}) ≠ Spcl({𝑦}), then 
there exist two disjoint Sp-open set 𝑈 and 𝑉 such that 
Spcl({𝑥}) ⊆ 𝑈 and Spcl({𝑦}) ⊆ 𝑉. 
 Conversely: Let 𝑥, 𝑦 ∈ 𝑋 such that Spcl({𝑥}) ≠ Spcl({𝑦}). 
Then by [Theoren 3.5] Sp-ker({𝑥}) ≠ Sp-ker({𝑦}) implies that by 
hypothesis there exist two disjoint Sp-open sets 𝑈 and 𝑉 such 
that Spcl({𝑥}) ⊆ 𝑈 and Spcl({𝑦}) ⊆ 𝑉. Thus 𝑋 is Sp-R1 space. 
 
Theorem 3.19: A space 𝑋 is Sp-T1 if and only if it is Sp-T0 and 
Sp-R0. 
Proof: Let 𝑋 be Sp-T1 space. Then from [Definition 2.8] and 
[Definition 2.7] 𝑋 is Sp-T0 and by [Theorem 2.10] every singlten 
set in 𝑋 is Sp-closed. Now 𝑋 is Sp-R0 space since for any 𝑥 ∈ 𝐺, 
where 𝐺 is Sp-open set, Spcl({𝑥}) = {𝑥} ⊆ 𝐺. Thus the space 𝑋 is 
Sp-T0 and Sp-R0. 
Conversley: Let 𝑥, 𝑦 ∈ 𝑋 be any two distinct points. Since 𝑋 is 
Sp-T0 space so there exists an Sp-open set 𝑈 such that 𝑥 ∈ 𝑈 and 
𝑦 ∉ 𝑈 or 𝑦 ∈ 𝑈 and 𝑥 ∉ 𝑈. Now let 𝑥 ∈ 𝑈 and 𝑦 ∉ 𝑈 and since 
𝑋 is Sp-R0 space so Spcl({𝑥}) ⊆ 𝑈 and we have 𝑦 ∉ 𝑈 implies 
that 𝑦 ∉ Spcl({𝑥}), then 𝑦 ∈ 𝑋\ Spcl({𝑥}) which is Sp-open set so 
take 𝑉 = 𝑋\ Spcl({𝑥}). Thus 𝑈 and 𝑉 are Sp-open sets in 𝑋 such 
that 𝑥 ∈ 𝑈, 𝑦 ∈ 𝑉 and 𝑥 ∉ 𝑉 and 𝑦 ∉ 𝑈, implies that 𝑋 is Sp-T1 
space. 
 
Theorem 3.20: A space 𝑋 is Sp-T2 if and only if it is Sp-R1 and 
Sp-T0. 
Proof: Let 𝑋 be Sp-T2. Then from Definition 2.9 and Definition 
2.7 𝑋 is Sp-T0 and to show 𝑋 is Sp-R1 space let 𝑥, 𝑦 ∈ 𝑋 such that 
Spcl({𝑥}) ≠ Spcl({𝑦}) and since 𝑋 is Sp-T1 space so by [Theorem 
2.10] every singleton set in 𝑋 is Sp-closed, that is meaning 
Spcl({𝑥}) = {𝑥} and Spcl({𝑦}) = {𝑦} implies that {𝑥} ≠ {𝑦} and 
since 𝑋 is Sp-T2 space so there exist two disjoint Sp-open sets 𝑈 
and 𝑉 such that 𝑥 ∈ 𝑈 and 𝑦 ∈ 𝑉 implies that Spcl({𝑥}) ⊆ 𝑈 and 
Spcl({𝑦}) ⊆ 𝑉. Thus 𝑋 is Sp-R1 space. 
Conversely: Let 𝑋 be Sp-R1 and Sp-T0 space and 𝑥, 𝑦 ∈ 𝑋 such 
that 𝑥 ≠ 𝑦. Now since 𝑋 is Sp-T0 so by [Definition 2.7] there 
exist an Sp-open set 𝑈 such that 𝑥 ∈ 𝑈 and 𝑦 ∉ 𝑈 or 𝑦 ∈ 𝑈 and 
𝑥 ∉ 𝑈, take 𝑥 ∈ 𝑈 and 𝑦 ∉ 𝑈 implies that 𝑈 ∩ {𝑦} = 𝜙, and then 
𝑥 ∉ Spcl({𝑦}) this implies that Spcl({𝑥}) ≠ Spcl({𝑦}) and since 𝑋 
is Sp-R1 so there exist two disjoint Sp-open sets 𝑈 and 𝑉 such 
that Spcl({𝑥}) ⊆ 𝑈 and Spcl({𝑦}) ⊆ 𝑉 implies that 𝑥 ∈ 𝑈 and 
𝑦 ∈ 𝑉. Thus 𝑋 is Sp-T2 space.  
 
Definition 3.21: [1] A filterbase 𝐹 is said to be Sp-converges to 
a point 𝑥 ∈ 𝑋, if for each Sp-open set 𝑈 containing 𝑥, there ex-
ists 𝐵 ∈ 𝐹 such that 𝐵 ⊆ 𝑈.  
 
Lemma 3.22: Let 𝑋 be a space and let 𝑥 and 𝑦 be any two 
points in 𝑋 such that every net in 𝑋 Sp-converging to 𝑦 Sp-
converging to 𝑥, then 𝑥 ∈ Spcl({𝑦}). 
Proof: Let 𝑥 = 𝑦 for all 𝑛 ∈ 𝑁. Then {𝑥 } ∈  is a net in 
Spcl({𝑦}), clearly {𝑥 } ∈  is Sp-converges to 𝑦 and then by the 

hypothesis {𝑥 } ∈  is Sp-converges to 𝑥 this implies that 𝑥 ∈ 
Spcl({𝑦}). 
 
Theorem 3.23: For a space 𝑋, the following statements are 
equivalent: 

1. 𝑋 is Sp-R0 space. 
2. If 𝑥, 𝑦 ∈ 𝑋, then 𝑦 ∈ Spcl({𝑥}) if and only if every net in 

𝑋 Sp-converging to 𝑦 Sp-converging to 𝑥. 
Proof: (1) ⇒ (2). Let 𝑥, 𝑦 ∈ 𝑋 such that 𝑦 ∈ Spcl({𝑥}) and let 
{𝑥 } ∈  be a net in 𝑋 such that Sp-converges to 𝑦. Since 𝑦 ∈ 
Spcl({𝑥}), then by [Theorem 3.13] Spcl({𝑥}) = Spcl({𝑦}) implies 
that 𝑥 ∈ Spcl({𝑦}) and then  {𝑥 } ∈  is Sp-converges to 𝑥. 
Conversely: Let 𝑥, 𝑦 ∈ 𝑋 such that every net in 𝑋 Sp-converging 
to 𝑦 Sp-converging to 𝑥. Then by [Lemma 3.22] 𝑥 ∈ Spcl({𝑦}) 
and by [Theorem 3.13] we have Spcl({𝑥}) = Spcl({𝑦}) this im-
plies that 𝑦 ∈ Spcl({𝑥}). 
(2) ⇒ (1). Let 𝑥, 𝑦 ∈ 𝑋 such that Spcl({𝑥}) ∩ Spcl({𝑦}) ≠ 𝜙. Then 
there exist 𝑤 ∈ Spcl({𝑥}) ∩ Spcl({𝑦}) implies that there exist a 
net {𝑥 } ∈  in Spcl({𝑥}) such that {𝑥 } ∈  is Sp-converges to 𝑤 
and since 𝑤 ∈ Spcl({𝑦}), then by hypothesis {𝑥 } ∈  is Sp-
converges to 𝑦 this implies that 𝑦 ∈ Spcl({𝑥}). By the same to-
ken we obtain that 𝑥 ∈ Spcl({𝑦}) implies that Spcl({𝑥}) = 
Spcl({𝑦}) and then by [Theorem 3.13] 𝑋 is Sp-R0 space. 
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